Dear all,
I have a question concerning the ‘population_template’ command. I am trying to create a fod population template whilst mitigate the effects of brain cropping on my data following the instructions [here](https://mrtrix.readthedocs.io/en/latest/fixel_based_analysis/mitigating_brain_cropping.html#mitigating-brain-cropping).
For that, I want to NaN-mask my images to avoid using areas outside of the FOV in the aggregate metric when creating the population template. I did the following:
- Create nanned brain masks for each participant via the following command:
for_each * : mrtreshold IN/dwi_mask.mif IN/dwi_mask_nanned.mif -abs 0.0 -comparison gt -nan
- Nanned the wmfod images for each participant via the following command:
for_each * : mrcalc IN/wmfod_norm.mif IN/dwi_mask_nanned.mif -mult IN/wmfod_norm_nanned.mif
Now, I want to create the population template by averaging all the values that are not ‘nan’ in the image. For this I thought about several options to run the command population template (see below). I wonder whether these options will give the same results or if one option would be better than the others?
Option
- Option A: using the nanned wmfod images as input + the nanned masks (values of NaN or 1) + the option “-nanmask”
population_template fod_input_nanned -mask_dir mask_input_nanned -nanmask -aggregate median wmfod_template_A.mif -voxel_size 1.3 - Option B: using the nanned wmfod images as input WITHOUT a mask dir and WITHOUT the option “-nanmask”
population_template fod_input_nanned -aggregate median wmfod_template_B.mif -voxel_size 1.3 - Option C: using the normal fod images + the nanned masks (values of NaN or 1) + the option “-nanmask”
population_template fod_input_NOTnanned -mask_dir mask_input_nanned -nanmask -aggregate median wmfod_template_C.mif -voxel_size 1.3 - Option D: using the normal fod images + the normal masks (values of 0 or 1) + the option “-nanmask”
population_template fod_input_NOTnanned -mask_dir mask_input_NOTnanned -nanmask -aggregate median wmfod_template_C.mif -voxel_size 1.3
I thus wonder whether all of these options would give the same result or if one option would be better than the others?
Thank you for your advice.
Maud